Blobs duaux et formule de Plancherel
Dual Blobs and Plancherel Formulas
                - Consulter un extrait
 - Année : 2004
 - Fascicule : 1
 - Tome : 132
 - Format : Électronique
 - Langue de l'ouvrage :
Anglais - Class. Math. : 22E50, 22E35, 20G25.
 - Pages : 55-80
 - DOI : 10.24033/bsmf.2459
 
           Soient $k$ un corps $p$-adique, $\mathsf G$ un groupe réductif connexe défini sur $k$, $G$ son groupe de points $k$-rationnels et $\mathfrak g$ l'algèbre de Lie de $\mathsf G$. Sous certaines hypothèses, nous quantifions le dual tempéré $\widehat G$ de $G$ par la formule de Plancherel sur $\mathfrak g$, en utilisant des développements en caractères. Pour cela, il faut en particulier mettre en correspondance les facteurs de la décomposition spectrale de la formule de Plancherel sur $\mathfrak g$ et sur $G$. Comme conséquence, nous démontrons que toute représentation tempérée contient un bon $\mathsf K$-type minimal ; nous étendons aussi ce résultat aux représentations admissibles irréductibles. 
        
                    
            Représentation, groupes $p$-adiques, formule de Plancherel, développements en caractères
                  
                