The boundary values of generalized Dirichlet series and a problem of Chebyshev
The boundary values of generalized Dirichlet series and a problem of Chebyshev
Astérisque | 1992
Anglais
There is an old conjecture of Chebyshev saying that there are more primes $p\equiv 3 \pmod 4$ than $p\equiv 1 \pmod 4$. S. Knapowski and P. Turán have given a quantitative interpretation of this statement. We prove a theorem about the boudary values of general Dirichlet series and show its relevance to Chebyshev's problem. In particular it turns out that the Knapowski-Turán coujecture is false at least if we accept the Riemann Hypothesis for $L$-functions $\pmod 4$.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.