A short proof of Albert-Brauer-Hasse-Noether theorem
A short proof of Albert-Brauer-Hasse-Noether theorem
Astérisque | 1992
Anglais
We present a short proof of the Albert-Brauer-Hasse-Noether theorem on the Brauer group of a global field. The connection between Galois cohomology and algebraic tori theory is emphasized. Let K/k be a finite Galois extension of arbitrary fields with group G, then the relative Brauer group is Br(K/k)≃H2(G,K∗)≃H1(G,T1(K)), where T1 is the algebraic k-torus associated to the augmentation ideal IG of G. When k is a global field, we use fundamental facts from algebraic tori theory, Tate-Nakayama duality and modern versions of Grunwald-Wang's lemma to deduce the short exact sequence O⟶Br(k)⟶⊕Br(kv)⟶Q/Z⟶0. where kv runs over the completions of k at all places v of k.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.