SMF

A short proof of Albert-Brauer-Hasse-Noether theorem

A short proof of Albert-Brauer-Hasse-Noether theorem

Werner HÜRLIMANN
     
                
  • Année : 1992
  • Tome : 209
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 11R34
  • Pages : 215-220
  • DOI : 10.24033/ast.165

We present a short proof of the Albert-Brauer-Hasse-Noether theorem on the Brauer group of a global field. The connection between Galois cohomology and algebraic tori theory is emphasized. Let K/k be a finite Galois extension of arbitrary fields with group G, then the relative Brauer group is Br(K/k)H2(G,K)H1(G,T1(K)), where T1 is the algebraic k-torus associated to the augmentation ideal IG of G. When k is a global field, we use fundamental facts from algebraic tori theory, Tate-Nakayama duality and modern versions of Grunwald-Wang's lemma to deduce the short exact sequence OBr(k)Br(kv)Q/Z0. where kv runs over the completions of k at all places v of k.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...