Ensemble oscillant d'un homéomorphisme de Brouwer, homéomorphismes de Reeb
Oscillation set of a Brouwer homeomorphism, Reeb homeomorphisms
Français
Un homéomorphisme de Brouwer est un homéomorphisme du plan, sans point fixe, préservant l'orientation. Le théorème des translations planes affirme qu'un tel homéomorphisme s'obtient toujours en « recollant des translations ». Dans cet article, nous introduisons un nouvel invariant de conjugaison des homéomorphismes de Brouwer, l'ensemble oscillant, pour tenter de décrire assez précisément la manière dont s'effectue le recollement des translations. D'une part, nous utilisons la notion d'ensemble oscillant pour montrer que des homéomorphismes de Brouwer extrêmement semblables peuvent appartenir à des es de conjugaison distinctes. Plus précisément, nous étudions les homéomorphismes de Reeb (i.e. les homéomorphismes de Brouwer qui préservent feuille par feuille un feuilletage de Reeb) ; nous montrons, par exemple, l'existence d'une infinité d'homéomorphismes de Reeb deux à deux non conjugués. D'autre part, nous utilisons la notion d'ensemble oscillant pour caractériser les éléments d'une e de conjugaison non triviale d'homéomorphismes de Brouwer : en un certain sens, nous donnons une caractérisation dynamique de « l'homéomorphisme de Brouwer le plus simple après la translation ».