Exposé Bourbaki 1116 : Topologie des hypersurfaces nodales de fonctions aléatoires gaussiennes
Exposé Bourbaki 1116 : Topology of nodal hypersurfaces of Gaussian random functions
Français
Depuis l'expérience de Chladni, les lignes nodales des fonctions propres du laplacien sur une variété riemannienne fascinent. Courant donne une borne supérieure sur le nombre de domaines nodaux, et aucune borne inférieure n'est connue – il n'est même pas vrai que le nombre de domaines nodaux doive tendre vers l'infini avec la valeur propre. Un autre domaine où le lieu des zéros occupe une place centrale est bien sûr la géométrie algébrique ; les variétés projectives réelles sont définies comme lieu des zéros réels de polynômes homogènes. Les bornes connues sur le nombre de composantes connexes du lieu des zéros en fonction du degré et de la dimension ne sont très certainement pas optimales (à part en bas degré et dimension). Ces deux exemples incitent à considérer des fonctions propres ou des polynômes réels « aléatoires », et à s'intéresser à la topologie typique du lieu des zéros. Nous décrirons les approches de Nazarov et Sodin (2007-2015) et Gayet et Welschinger (2010-2015) dans le cas gaussien.