Exposé Bourbaki 886 : Théorèmes d'algébricité en géométrie diophantienne
Exposé Bourbaki 886 : Algebraicity theorems in diophantine geometry
Astérisque | Exposés Bourbaki | 2002
Français
Dans un article récent, J.-B. Bost établit un critère assurant que certaines « sous-variétés formelles » de variétés algébriques sont en fait algébriques. Son théorème unifie et généralise des résultats des frères Chudnovsky et de Y. André motivés par une conjecture arithmétique de Grothendieck prédisant que les solutions de certaines équations différentielles sont des fonctions algébriques. La démonstration reprend les techniques d'approximation diophantienne utilisées par ces auteurs avec toutefois un point de vue systématiquement géométrique, via notamment la géométrie d'Arakelov et le formalisme des pentes.
Géométrie d'Arakelov, méthode des pentes, feuilles algébriques de feuilletages, équations différentielles arithmétiques, propriété de Liouville
Électronique
Prix public
10.00 €
Prix membre
7.00 €
Quantité