Intégrales orbitales pondérées sur $\mathrm{SL}(2,\Bbb R)$
Weighted orbital integrals on $\mathrm{SL}(2,\Bbb R)$
Anglais
Les intégrales orbitales à poids figurent dans la version adélique de la formule des traces de Selberg. Elles donnent des distributions tempérées, mais non invariantes, des groupes locaux. L'objet de ce travail est de donner des formules explicites pour la transformée de Fourier des intégrales orbitales à poids lorsque le groupe local est SL$(2,\Bbb R)$. Il faut d'abord préciser la notion de transformée de Fourier d'une distribution non invariante. Enfin on démontre que la formule vérifie les propriétés connues des intégrales orbitales à poids.