Motifs des variétés analytiques rigides
Motives of Analytic Varieties
Français
Dans ce travail, j'étends la théorie des motifs, comme développée par Voevodsky et Morel-Voevodsky, au cadre de la géométrie analytique rigide sur un corps complet non archimédien. Le premier chapitre reprend l'approche homotopique de Morel et Voevodsky. On y trouve la construction de la catégorie homotopique stable motivique des variétés analytiques rigides ainsi qu'une description complète de cette dernière en termes de motifs algébriques lorsque le corps de base est d'égale caractéristique nulle et de valuation discrète. Le second chapitre reprend l'approche par les transferts de Voevodsky. On y trouve la construction de la catégorie triangulée des motifs analytiques rigides, ainsi qu'une extension à la géométrie rigide d'une grande partie des résultats fondamentaux de Voevodsky et notamment sa théorie des préfaisceaux avec transferts invariants par homotopie. Ceci dit, le présent travail ne se résume pas à un simple décalque de la théorie classique et le lecteur trouvera beaucoup de résultats nouveaux et spécifiques au contexte de la géométrie rigide.