Anglais
A conjecture of Szpiro states that $|D|\leq C(\epsilon )N^{6+\epsilon }$ for every elliptic curve defined over the rationals with minimal discriminant $D$ and conductor $N$. We show that this inequality, if true, cannot be much improved ; for example, it would be false with $N^\epsilon $ replaced by any fixed power of $\log N$.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.