Quasi-isomorphismes stables de formalité pour les cochaînes de Hochschild
Stable Formality Quasi-isomorphisms for Hochschild Cochains

- Consulter un extrait
- Année : 2021
- Tome : 168
- Format : Électronique, Papier
- Langue de l'ouvrage :
Anglais - Class. Math. : 18D50, 18G55, 55U15
- Nb. de pages : 108
- ISBN : 978-2-85629-932-6
- ISSN : 0249-633-X
- DOI : 10.24033/msmf.476
Nous considérons des $ L_{\infty}$-quasi-isomorphismes pour les cochaînes de Hochschild dont les applications structurelles admettent une expansion graphique. Nous introduisons la notion de quasi-isomorphisme stable de formalité qui formalise les $ L_{\infty}$-quasi-isomorphismes de ce genre. Nous définissons une équivalence homotopique sur l’ensemble des quasi-isomorphismes stables de formalité. Nous prouvons que l’ensemble des classes homotopiques de quasi-isomorphismes stables de formalité est un torseur pour le groupe correspondant à la cohomologie de degré zéro du graphe-complexe complet (direct). Ce résultat peut être interprété comme une description complète des classes homotopiques de quasi-isomorphismes de formalité pour les cochaînes de Hochschild dans le cadre stable.