Semiclassical expansions of the thermodynamic limit for a Schrödinger equation
Semi classical expansions of the thermodynamic limit for a Schrödinger equation
Astérisque | 1992
Anglais
We give a proof of the semi- ical expansion of the thermodynamic limit for a model introduced in statistical mechanics by M.Kac. For this family (parametrized by m) of Schrödinger operators $P^{(m)}(h) =-\sum _{k=1}^m h^2\partial ^2/\partial x^2_k + V^{(m)}(x)$ defined on $\mathbb {R}^m$, this corresponds to the study of the expansion in power of $h$ of $\lim _{m\to \infty }\lambda (m, h)/m$ where $\lambda (m, h)$ is the first eigenvalue of $P^{(m)}(h)$.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.