Les contributions de Hilbert et de Dehn aux géométries non-archimédiennes et leur impact sur l’école italienne
The contributions of Hilbert and Dehn to non-Archimedean geometries and their impact on the Italian school
Anglais
Cet article présente les contributions de Max Dehn au développement des géométries non archimédiennes. Un moyen pour montrer l’indépendance de l’axiome d’Archimède par rapport aux axiomes d’incidence et d’ordre est de construire des modèles de géométries non archimédiennes. Les travaux de Max Dehn dans ce champ concernent pour l’essentiel les relations entre l’axiome d’Archimède et les théorèmes de Legendre. Quelques-unes de ces liaisons ont été aussi étudiées par Bonola, un étudiant d’Enriques, qui est parmi les rares Italiens à avoir apprécié le travail de Dehn. Un des principaux résultats, lorsque l’axiome d’Archimède n’est pas satisfait, est que l’axiome des parallèles est in-
dépendant de celui de la somme des angles internes d’un triangle. Hilbert lui-même revint sur ce problème en construisant un modèle de géométrie non archimédienne dans lequel il y a une infinité de droites passant par un point et parallèles à une droite donnée, alors que la somme des angles internes d’un triangle est égale à deux angles droits.