Axiome A versus phénomène de Newhouse pour les modèles jouets de Benedicks-Carleson
Axiom A versus Newhouse phenomena for Benedicks-Carleson toy models

Anglais
Nous considérons une famille de systèmes introduite en 1991 par Benedicks et Carleson comme un modèle jouet pour la dynamique des applications d'Hénon. Nous montrons que l'axiome A de Smale est une propriété $C^1$-dense parmi les systèmes dans cette famille, même si nous trouvons aussi des ensembles $C^2$-ouverts (liés au phénomène de Newhouse) où l'axiome A de Smale n'est pas satisfait. En particulier, notre résultat soutient la conjecture de Smale selon laquelle l'axiome A est une propriété $C^1$-dense parmi les difféomorphismes de surfaces. Les outils utilisés dans la preuve de notre résultat sont : (1) un théorème récent de Moreira qui dit que les intersections stables des ensembles de Cantor dynamiques (une des obstructions majeures à l'axiome A pour les difféomorphismes de surfaces) peuvent être enlevées par des perturbations $C^1$-petites ; (2) la bonne géométrie de l'ensemble de points critiques dynamiques (au sens de Rodriguez-Hertz et Pujals) due à la forme particulière des modèles jouets de Benedicks-Carleson.