Multiplicateurs de Fourier réguliers dans des algèbres de groupe par la dimension de Sobolev
Smooth Fourier multipliers in group algebras via Sobolev dimension
Anglais
Nous étudions des multiplicateurs de Fourier à symboles réguliers sur des groupes localement compacts. De nouveaux critères de Hörmander-Mikhlin pour des multiplicateurs spectraux et non spectraux sont établis. Notre approche se base sur trois nouveaux résultats clés. Premièrement, nous utilisons certains opérateurs maximaux dans des espaces $L_p$ non commutatifs pour obtenir un contrôle sur de larges es de multiplicateurs. Ce principe général — exploité en analyse harmonique euclidienne ces 40 dernières années — présente un intérêt indépendant et pourrait admettre de nouvelles applications. Deuxièmement, en établissant une version non commutative de la théorie de plongement de Sobolev pour les semigroupes de Markov initiée par Varopoulos, la dimension de cocycle utilisée auparavant est remplacée par la dimension de Sobolev. Ceci permet plus de flexibilité sur la régularité du symbole. Enfin, nous introduisons une notion duale de la croissance polynomiale pour exploiter davantage notre principe du maximum sur des multiplicateurs de Fourier non spectraux. La combinaison de ces ingrédients produit de nouvelles estimations $L_p$ pour des multiplicateurs de Fourier réguliers dans des algèbres de groupe.