Connexions excellentes dans les motifs de quadriques
Excellent connections in the motives of quadrics
Anglais
Dans cet article, nous prouvons la conjecture qui dit que le motif d'une quadrique réelle est le « plus décomposable » parmi ceux des quadriques de la même dimension sur n'importe quel corps. Cela restreint sûrement les motifs possibles pour une quadrique anisotrope quelconque. Nous en tirons en corollaire une minoration du rang d'un facteur direct indécomposable du motif d'une quadrique en fonction de sa dimension, ce qui généralise le théorème bien connu du motif binaire. De plus, nous obtenons une description des motifs de Tate qui apparaissent, ce qui implique alors une nouvelle preuve du théorème de Karpenko sur les valeurs du premier indice de Witt. D'autres relations entre les indices de Witt supérieurs s'en suivent également.
Formes quadratiques, motifs, groupes de Chow, opérations de Steenrod