Étude asymptotique du noyau de la chaleur, indice local et traces sur les variétés de Cauchy-Riemann avec action d’un cercle
Heat kernel asymptotics, local index theorem and trace integrals for Cauchy-Riemann manifolds with $S^{1}$ action
Anglais
Le laplacien de Kohn sur une variété de Cauchy-Riemann (CR) avec action transverse d’un cercle est un exemple important pour l’analyse complexe d’un opérateur transversalement elliptique. Nous établissons ici un développement asymptotique du noyau de la chaleur de ses coefficients de Fourier, qui inclut une contribution des strates singulières de l’action du cercle. Nous calculons ensuite une densité d’indice locale pour ces opérateurs en montrant, à l’aide de techniques dues à Getzler, que certaines contributions des strates singulières non-triviales dans le développement du noyau de la chaleur s’annulent ici. Ce résultat, que l’on peut interpréter comme un théorème d’indice local sur ces variétés CR, s’applique notamment aux variétés de Sasaki qui sont importantes en théorie des cordes. Nous donnons également des exemples concrets de telles variétés CR, issues notamment des variétés de Brieskorn. De plus, nous pouvons réinterpréter dans certains cas la version du théorème de HirzebruchRiemann-Roch pour un orbifold complexe muni d’un fibré orbifold en droites complexes due à Kawasaki comme une formule d’indice. Notre méthode évite le recours à la cohomologie équivariante et les annulations des termes issus des strates singulières surviennent naturellement.