Exposé Bourbaki 740 : Stabilité par déformation métrique de Minkowski [d'après D. Christodoulou et S. Klainerman]
Astérisque | Exposés Bourbaki | 1991
Français
En Relativité Générale, les équations de champ, dites d'Einstein, forment un système hyperbolique non-linéaire du second ordre dont certains caractères géométriques (comme l'invariance par difféomorphisme) rendent l'analyse difficile. On a d'abord obtenu l'existence de solutions avec symétries ou de solutions locales. Depuis une vingtaine d'années, l'attention s'est portée sur des questions plus globales notamment la recherche de métriques suffisamment plates à l'infini en vue de modéliser des systèmes isolés. Dans cette voie, D. Christodoulou et S. Klainemman ont établi dans un travail monumental l'existence de solutions globalement définies dans $\mathbf {R}^4$ sans singularités (ni trous noirs) suffisamment proches de la métrique de Minkowski.
Électronique
Prix public
10.00 €
Prix membre
7.00 €
Quantité