SMF

Exposé Bourbaki 768 : Intersection theory on Deligne–Mumford compactifications

Exposé Bourbaki 768 : Intersection theory on Deligne–Mumford compactifications

Eduard LOOIJENGA
Exposé Bourbaki 768 : Intersection theory on Deligne–Mumford compactifications
     
                
  • Année : 1993
  • Tome : 216
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 14D20, 14H10
  • Pages : 187-212
  • DOI : 10.24033/ast.212

The moduli space ${\cal M}_g^n$ of smooth complex projective curves of genus $g$ equipped with $n$ distinct numbered points is an irreducible algebraic variety of dimension $3g-3+n$ (assuming $n\ge 1$ for $g=1$ and $n\ge 3$ for $g=0$). Its natural compactification $\overline {\cal M}_g^n$ carries line bundles $L_i$, $i=1,\dots n$, defined by “taking the cotangent space at the $i$-th point”. For nonnegative integers $(d_1,d_2,\dots ,d_n)$, let $\langle \tau _{d_1}\tau _{d_2}\cdots \tau _{d_n}\rangle $ be the value of the Chern monomial $c_1(L_1)^{d_1}\dots c_1(L_n)^{d_n}$ on the fundamental of $\overline {\cal M}_g^n$ ($=0$ unless $\sum _i d_i = 3g-3+n$). Witten conjectured that the function $\sum _n {1\over n!}\sum _{d_1,\dots ,d_n} \langle \tau _{d_1}\tau _{d_2}\cdots \tau _{d_n} \rangle T_{2d_1+1}T_{2d_2+1}\dots T_{2d_n+1}$ is modulo a simple rescaling of the logarithm of a $\tau $–function for the K–dV hierarchy. Kontsevich's proof (1991) includes an explicit expansion of this function.


Électronique
Electronic
Prix public Public price 10.00 €
Prix membre Member price 7.00 €
Quantité
Quantity
- +


Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...