Anglais
Contrairement à ce que son titre suggère Pursuing Stacks (ou du moins la partie du projet que Grothendieck a réalisée et qui devait s'intituler The Modelizing Story ou Histoire de Modèles) n'est pas consacré à la poursuite des champs, qui n'occupe que les treize premières sections ainsi que partiellement les sections 15-21 et 27. De plus, il s'agit surtout de $\infty$-champs sur le point, autrement dit, des $\infty$-groupoïdes faibles, les seules réflexions sur de $\infty$-champs sur un topos arbitraire, comme coefficients naturels pour une cohomologie non abélienne, étant purement heuristiques. Le reste des cent quarante sections traite de la théorie de l'homotopie: recherche de modèles pour les types d'homotopie (et plus particulièrement de petites catégories dont la catégorie des préfaisceaux modélise canoniquement les types d'homotopie: les catégories test), structures homotopiques, structures de contractibilité et d'asphéricité, abélianisation et schématisation des types d'homotopie. Grothendieck pensait revenir ultérieurement sur la question des $\infty$-champs sur un topos et développer, dans un ou deux volumes supplémentaires, ce qu'il avait esquissé dans ses lettres à Breen (lettres qu'il a intégrées dans Pursuing Stacks comme appendice), mais il ne l'a jamais fait. Néanmoins, la recherche des modèles pour les types d'homotopie n'est pas sans rapport avec les $\infty$-champs, puisque d'après "l'hypothèse d’homotopie", conjecture fondamentale de Grothendieck, les $\infty$-groupoïdes faibles doivent modéliser les types d'homotopie.
Le premier volume de cette édition comporte les quatre premiers chapitres, correspondant aux sections 1-91 et 95-98. Dans un second volume, on publiera les trois derniers chapitres, sections 92-94 et 99-140, les lettres à Breen, ainsi que la correspondance de Grothendieck avec de nombreux mathématiciens, autour des thèmes de Pursuing Stacks.