Processus de feux de forêt généraux en dimension $1$
One Dimensional General Forest Fire Processes
Anglais
Nous étudions le processus des feux de forêt généralisé en dimension $1$ : sur chaque site de $\mathbb {Z}$, des graines et des allumettes tombent suivant des processus de renouvellement stationnaires i.i.d. Quand une graine tombe sur un site vide, un arbre pousse immédiatement. Quand une allumette tombe sur un site occupé, un feu démarre et brûle immédiatement la composante connexe occupée autour de ce site. Nous montrons — sous des hypothèses raisonnables sur les processus de renouvellement — que lorsque la fréquence des allumettes tend vers zéro, le processus converge, correctement renormalisé, vers un processus limite. Suivant la nature des processus de renouvellement gouvernant l'apparition des graines, quatre processus limites sont possibles. Les quatre modèles limites peuvent être simulés parfaitement. Cette étude généralise des résultats de [15], où nous supposions que graines et allumettes tombaient suivant des processus de Poisson.