Rigidité hyperbolique des réseaux de rang supérieur
Hyperbolic rigidity of higher rank lattices
Anglais
Nous montrons que toute action d'un réseau de rang supérieur sur un espace Gromov-hyperbolique est élémentaire. Plus précisément, toute action est elliptique ou parabolique. Ce résultat est une large généralisation du fait que toute action d'un réseau de rang supérieur sur un arbre a un point fixe. Une conséquence est que toute quasi-action d'un réseau de rang supérieur sur un arbre est elliptique, autrement dit il a la propriété (QFA) de Manning. De plus, nous obtenons une preuve nouvelle du théorème de Farb-Kaimanovich-Masur disant que tout morphisme d'un réseau de rang supérieur vers le groupe modulaire d'une surface est d'image finie, sans avoir recours au théorème du sous-groupe normal de Margulis ni à la cohomologie bornée. Enfin, nous montrons que tout morphisme d'un réseau de rang supérieur vers un groupe hiérarchiquement hyperbolique est d'image finie. Dans l'appendice, Vincent Guirardel et Camille Horbez déduisent des résultats de rigidité pour des morphismes de réseaux de rang supérieur à valeurs dans divers groupes d'automorphismes extérieurs.