Stabilité géométrique du fibré cotangent et du recouvrement universel d'une variété projective
Geometric stability of the cotangent bundle and the universal cover of a projective manifold
                - Consulter un extrait
 - Année : 2011
 - Fascicule : 1
 - Tome : 139
 - Format : Électronique
 - Langue de l'ouvrage :
Anglais - Class. Math. : 14J40, 32Q26, 32J27, 14E30
 - Pages : 41-74
 - DOI : 10.24033/bsmf.2599
 
          Nous établissons tout d'abord un renforcement du théorème de semi-positivité de Miyaoka : le déterminant de tout quotient de toute puissance tensorielle du fibré cotangent d'une variété projective $X$ non-uniréglée est pseudo-effectif (au lieu de : génériquement nef). Une première conséquence est que $X$ est de type général si son fibré cotangent a un sous-faisceau dont le déterminant est ‘big'. Parmi diverses applications, nous montrons que si le revêtement universel de $X$ n'est pas recouvert par des sous-ensembles analytiques compacts de dimension strictement positive, alors $X$ est de type général si $\chi (O_X)\neq 0$.Nous montrons enfin que $K_X$ est $\mathbb Q$-effectif si $K_X+L$ l'est, pour un fibré en droites numériqiuement effectif $L$ sur $X$. La démonstration de ce résultat central repose sur les travaux de C. Simpson sur les lieux de Green-Lazarsfeld, et sur les revêtements cycliques de Viehweg. Ce résultat a été récemment étendu aux paires 'Log-canoniques' en utilisant les mêmes ingrédients.
        
                    
            Fibré stable, fibré en droites pseudo-effectif, dimension de Moishezon-Iitaka-‘Kodaira', revêtement universel, variété uniréglée
                  
                