Sur la finitude des nombres de Pythagore des fonctions méromorphes réelles
On the finiteness of Pythagoras numbers of real meromorphic functions
Anglais
Nous considérons le 17e problème de Hilbert pour les fonctions analytiques réelles globales sous une forme modifiée faisant intervenir des sommes infinies de carrés. Nous démontrons alors un principe local-global pour qu'une fonction analytique réelle globale soit une somme de carrés de fonctions méromorphes réelles globales. Nous déduisons qu'une solution affirmative au 17e problème de Hilbert pour les fonctions analytiques réelles globales entraîne la finitude du nombre de Pythagore du corps des fonctions méromorphes réelles globales et donc celle du corps des séries méromorphes réelles. Cela donne une mesure de la difficulté du 17e problème de Hilbert dans le cas analytique.
17e problème de Hilbert, nombre pythagorien, somme de carrés, mauvais ensemble, germes d'ensembles fermés