Systèmes intégrables semi-classiques : du local au global
Semi classical integrable systems
Français
Ce livre présente une vue panoramique des systèmes hamiltoniens complètement intégrables de dimension finie dans laquelle on apercevra, côte à côte et sous des traits similaires, leurs aspects iques et quantiques. La mécanique ique y est abordée sous l'angle de l'étude géométrique du feuilletage lagrangien singulier, dont les feuilles régulières sont les fameux tores de Liouville. Les singularités du système sont étudiées au moyen de formes normales locales et semi-globales, faisant apparaître des invariants topologiques et symplectiques. Certains liens avec les variétés toriques sont explorés. Les systèmes intégrables quantiques sont traités dans le cadre de l'analyse microlocale semi- iques . Le calcul pseudo-différentiel et les opérateurs intégraux de Fourier offrent un outillage efficace pour découvrir comment les caractéristiques géométriques de ces systèmes influent sur leurs propriétés spectrales.
Grâce au soutien du CNRS, à votre générosité et à notre volonté de partager l'accès aux sciences, ce document est en libre accès. N'hésitez pas et continuez à nous soutenir !