SMF

Sur les bases stables K-théoriques de la résolution de Springer

On the K-theory stable bases of the Springer resolution

Changjian SU, Gufang ZHAO & Changlong ZHONG
Sur les bases stables K-théoriques de la résolution de Springer
  • Consulter un extrait
  •  
                
  • Année : 2020
  • Fascicule : 3
  • Tome : 53
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 20G05, 19E08, 20G25
  • Pages : 663-711
  • DOI : 10.24033/asens.2431

Les bases stables cohomologiques et K-théoriques proviennent de l'étude de la cohomologie quantique et de la K-théorie quantique. La formule de restriction pour les bases stables cohomologiques a joué un rôle important dans le calcul de la connexion quantique du fibré cotangent de variétés de drapeaux partielles. Dans cet article, nous étudions les bases stables K-théoriques de fibré cotangents des variétés de drapeaux. Nous décrivons ces bases en fonction de l'action de l'algèbre de Hecke affine et de l'algèbre de Kostant-Kumar. En utilisant cette description algébrique et la méthode des polynômes de racine, nous donnons une formule de restriction des bases stables. Nous l'appliquons pour obtenir la formule de restriction pour les variétés de drapeaux partielles. Nous construisons également une relation entre la base stable et la base de Casselman dans les représentations de la série principale du groupe dual de Langlands $p$-adique. Comme une application, nous donnons une formule close pour la matrice de transition entre la base de Casselman et les fonctions caractéristiques.

Cohomological and K-theoretic stable bases originated from the study of  quantum cohomology and quantum K-theory. Restriction formula for cohomological stable bases played an important role in computing the quantum connection of cotangent bundle of partial flag varieties. In this paper we study the K-theoretic stable bases of cotangent bundles of flag varieties.
We describe these bases in terms of the action of the affine Hecke algebra and the twisted group algebra of Kostant-Kumar. Using this algebraic description and the  method of root polynomials, we give a restriction formula of the stable bases. We apply it to obtain the  restriction formula for partial flag varieties. We also build a relation between the stable basis and the Casselman basis in the principal series representations of the Langlands dual group. As an application, we give a closed formula for the transition matrix between Casselman basis and the characteristic functions.

Bases stables K-théoriques, résolution de Springer, algèbre de Hecke affine, groupe $p$-adique
K-theory stable basis, Springer resolution, Affine Hecke algebra, $p$-adic groups