Types de symétrie des surfaces de Riemann hyperelliptiques
Symmetry types of hyperelliptic Riemann surfaces

- Consulter un extrait
- Année : 2001
- Tome : 86
- Format : Électronique, Papier
- Langue de l'ouvrage :
Anglais - Class. Math. : Primary: 14H, 30F. Secondary: 20F, 20H
- Nb. de pages : vi+122
- ISBN : 2-85629-112-0
- ISSN : 0249-633-X
- DOI : 10.24033/msmf.399
Une surface de Riemann compacte X est dite symétrique si elle admet une involution antiholomorphe τ:X→X. On appelle structure réelle une telle involution. Deux structures réelles sont isomorphes si elles sont conjuguées par le groupe complet Aut±X des automorphismes holomorphes et anti-holomorphes de X. Dans ce mémoire, nous classifions à isomorphisme près les structures réelles de toutes les surfaces de Riemann hyperelliptiques de genre g≥2. Nous calculons aussi les invariants topologiques de chaque classe d'isomorphisme. Nous donnons la liste des groupes qui agissent comme le groupe des automorphismes holomorphes et anti-holomorphes d'une telle surface. De plus, nous décrivons la courbe algébrique complexe associée à une telle surface en terme d'équations polynomiales. Nous donnons enfin une formule explicite pour une structure réelle dans chaque classe d'isomorphisme.