Surfaces de Del Pezzo singulières réelles et variétés de dimension 3 munies d'une fibration en courbes rationnelles
Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II

- Consulter un extrait
- Année : 2009
- Fascicule : 4
- Tome : 42
- Format : Électronique
- Langue de l'ouvrage :
Anglais - Class. Math. : 14P25, 14M20, 14J26
- Pages : 531-557
- DOI : 10.24033/asens.2102
Soit W→X une variété projective réelle non singulière munie d'une fibration en courbes rationnelles et telle que W(R) soit orientable. J. Kollár a montré qu'une composante connexe N de W(R) est essentiellement une variété de Seifert ou une somme connexe d'espaces lenticulaires. Répondant à trois questions de Kollár, nous donnons une estimation optimale du nombre et des multiplicités des fibres de Seifert (resp. du nombre et des torsions des espaces lenticulaires) lorsque X est une surface géométriquement rationnelle. Lorsque N admet une fibration de Seifert au-dessus d'un orbifold F, nos résultats généralisent le théorème de Comessatti sur les surfaces rationnelles réelles lisses : F ne peut pas être à la fois orientable et de type hyperbolique. Nous montrons, ce qui est une surprise, qu'à la différence du théorème de Comessatti, il existe des exemples où F est non orientable, de type hyperbolique, et X est minimale.