La réalisation étale et les opérations de Grothendieck
Étale realization and Grothendieck operations
Français
Dans cet article, nous construisons des foncteurs de réalisation étale définis sur les catégories $\mathbf {DA} ^{\mathrm {\acute {e}t} }(X,\Lambda )$ des motifs étales (sans transferts) au-dessus d'un schéma $X$. Notre construction est naturelle et repose sur un théorème de rigidité relatif à la Suslin-Voevodsky que nous devons établir au préalable. Nous montrons ensuite que ces foncteurs sont compatibles aux opérations de Grothendieck et aux foncteurs « cycles proches ». Au passage, nous démontrons un certain nombre de propriétés concernant les motifs étales.
Motif, cohomologie étale, réalisation étale, six opérations de Grothendieck, formalisme des cycles proches.