Calcul symbolique et calcul intégral de Lagrange à Cauchy
Symbolic calculus and integral calculus, from Lagrange to Cauchy
Français
Dans un mémoire publié en 1774, Lagrange utilise des méthodes reposant sur l'analogie des puissances positives et des différences, et des puissances négatives et des sommes, qui lui permettent, notamment, d'obtenir diverses formules d'intégration. D'autres auteurs s'engagent alors dans cette voie. Les problèmes de calcul intégral jouent un rôle important dans le développement de diverses formes de calcul symbolique et celui-ci fait la preuve de son efficacité dans ce domaine : il permet de généraliser ou de retrouver rapidement des résultats anciens, introduit de la clarté dans des pratiques d'intégration numérique, unifie les procédures d'intégration des divers types d'équations linéaires, et conduit à la résolution de nouvelles équations aux dérivées partielles. Cependant, les notations et les fondements mêmes des nouveaux procédés restent longtemps l'objet d'interrogations. Dans les années 1820, Cauchy apporte une réponse conforme à sa conception de la rigueur : en utilisant la formule intégrale de Fourier, il donne aux symboles d'opération une signification précise, et il traite par ce moyen les divers types d'équations linéaires à coefficients constants.
Calcul symbolique, calcul intégral, équations différentielles linéaires, analogie, Lagrange, Laplace, Lorgna, Prony, Bürmann, Lacroix, Arbogast, Français, Servois, Herschel, Babbage, Fourier, Poisson, Cauchy