Changements de temps des flots nilpotents d’Heisenberg
Time-changes of Heisenberg nilflows
Anglais
Nous étudions les flots nilpotents de Heisenberg en dimension trois. Sous une condition Diophantienne de mesure pleine sur le générateur du flot, nous montrons l’existence de fonctionnelles de Bufetov, qui sont asymptotiques aux intégrales ergodiques pour toutes les fonctions suffisamment différentiables, qui ont une propriété modulaire, et satisfont une identité de changement d’échelle sous la dynamique de renormalisation. De la propriété asymptotique, nous dérivons des résultats sur les distributions limites des moyennes ergodiques, qui généralisent les travaux de Griffin et Marklof GM, et Cellarosi et Marklof CM. Ensuite nous montrons une propriété d’analyticité des fonctionnelles dans les directions transverses au flot. Comme conséquence de cette propriété d’analyticité, nous dérivons l’existence d’un ensemble de mesure pleine de flots nilpotents dont les changements de temps génériques (non-triviaux) sont mélangeant, et de plus ont une vitesse de mélange polynomiale étirée pour toutes les fonctions suffisamment différentiables (cela améliore un résultat de Avila, Forni, et Ulcigrai AFU). De plus, nous montrons qu’il existe un ensemble de dimension de Hausdorff maximale de flots nilpotents tels que les changements de temps génériques non-triviaux ont une vitesse de mélange polynomiale.