Compactification des champs de chtoucas et théorie géométrique des invariants
Compactification of the stacks of shtukas and geometric invariant theory
Français
Dans la preuve de Drinfeld et Lafforgue de la correspondance de Langlands pour $\mathrm {GL}_r$ sur les corps de fonctions, l'étape la plus difficile consiste à construire des compactifications des espaces de module (ou plutôt des champs) de chtoucas de Drinfeld. Pour vérifier la propreté, Lafforgue a utilisé la réduction semistable à la Langton et une analyse détaillée des propriétés modulaires qui définissent les compactifications. Si l'on espère démontrer la correspondance de Langlands sur les corps de fonctions pour d'autres groupes réductifs, une des questions naturelles est de généraliser les compactifications de Lafforgue dans le contexte d'un groupe réductif arbitraire. Dans ce cas, l'approche de Lafforgue semble difficile à mettre en œuvre. Ce texte présente une façon de construire des compactifications des champs de chtoucas à modifications multiples qui généralisent celle des champs de chtoucas de Drinfeld. Notre approche repose sur une méthode plus générale : la théorie géométrique des invariants. Dans le cas des champs de chtoucas de Drinfeld, nous retrouvons les compactifications de Lafforgue et découvrons de nouvelles compactifications, entre autres des compactifications qui sont duales de celles de Lafforgue. De plus, notre méthode est susceptible de produire des compactifications des champs de $G$-chtoucas pour un groupe réductif quelconque $G$.