Exposé Bourbaki 1169 : Estimations de résolvante et localisation du spectre pour certaines classes d’opérateurs pseudo-différentiels semi-classiques non autoadjoints (d'après Nils Dencker, Johannes Sjöstrand et Maciej Zworski)
Exposé Bourbaki 1169 : Resolvent estimates and localization of the spectrum for certain classes of non-selfadjoint semiclassical pseudodifferential operators (after Dencker, Sjöstrand and Zworski)
Français
L’objet de l’exposé sera de présenter les travaux de Dencker, Sjöstrand et Zworski sur le pseudo-spectre de certaines classes d’opérateurs pseudo-différentiels semi-classiques non autoadjoints. L’étude des propriétés pseudo-spectrales d’un opérateur revient à étudier les lignes de niveau de la norme de sa résolvante. Pour des opérateurs non autoadjoints, il s’agit d’un problème non trivial, et ce même lorsque le spectre de ces opérateurs est connu. En effet, il n’y a aucun contrôle a priori de la résolvante d’un opérateur non autoadjoint par son spectre, et la résolvante d’un tel opérateur peut exploser en norme dans des régions non bornées de l’ensemble résolvant très éloignées du spectre. Les travaux de Dencker, Sjöstrand et Zworski que nous présenterons montrent comment la théorie de l’analyse microlocale et notamment des résultats de non résolubilité ou de sous-ellipticité, permettent d’expliquer ces phénomènes de contrôle ou d’explosion de la résolvante pour certaines classes d’opérateurs pseudo-différentiels semi-classiques non autoadjoints.