The Fuller index and $\mathbb {T}$-equivariant stable homotopy theory
The Fuller index and $\mathbb {T}$-equivariant stable homotopy theory
Astérisque | 1990
Anglais
In 1967, F. B. Fuller introduces a remarkable index for counting periodic orbits of smooth flows. It has become apparent in recent work of J. Ize and E. N. Dancer that the natural setting for Fuller's index is $\mathbb {T}$-equivariant homotopy theory, where $\mathbb {T}$ is the circle group. This paper describes their work in the conventionnal framework of equivqriqnt stable homotopy theory over a base and index theory for fixed-points of map and zeroes of vector fields.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.