Injectivité d'applications C1 de R2 dans R2 à l'infini et de champs de vecteurs dans le plan
Injectivity of C1 maps R2→R2 at infinity and planar vector fields
Astérisque | 2003
- Consulter un extrait
- Année : 2003
- Tome : 287
- Format : Électronique
- Langue de l'ouvrage :
Anglais - Class. Math. : 37E35, 37C10
- Pages : 89-102
- DOI : 10.24033/ast.591
Soit X:R2∖¯Dσ→R2 une application C1, où σ>0 et ¯Dσ={p∈R2:||p||≤σ}. (i) Si pour un ε>0 et pour tout p∈R2∖¯Dσ, aucune valeur propre de DX(p) n'appartient à (−ε,∞), alors il existe s≥σ tel que X|R2∖¯Ds est injective. (ii) Si pour un ε>0 et pour tout p∈R2∖¯Dσ, aucune valeur propre de DX(p) n'appartient à (−ε,0]∪{z∈C:ℜ(z)≥0}, alors il existe p0∈R2 tel que le point ∞ de la sphère de Riemann R2∪{∞} soit un attracteur ou un repulseur de x′=X(x)+p0.
Injectivité, composante de Reeb, champs de vecteurs