Platitude du module universel pour $\mathrm {GL}_3$ en caractéristique non banale
Flatness of the universal module for $\mathrm {GL}_3$
Français
Soient $F$ un corps $p$-adique, $G=\mathrm {GL}_3(F)$. Pour $\chi $ un caractère de l'algèbre de Hecke sphérique de $G$ sur un anneau commutatif $k$, on introduit à la suite de Serre une représentation lisse $M_\chi $ de $G$ sur $k$ qui gouverne la théorie des représentations non ramifiées de $G$ sur $k$. Nous prouvons que $M_\chi $ est plat sur $k$ et que si $p$ est inversible dans $k$, alors pour tout sous-groupe compact ouvert suffisament petit $U$ de $G$, le module $M_\chi ^U$ est libre de rang fini sur $k$. Ceci était conjecturé par Lazarus. Comme corollaire, nous obtenons que si $k$ est un corps de caractéristique différente de $p$, $M_{\chi }$ a même semi-simplification que la série principale non ramifiée de caractère $\chi $, dont la structure est décrite par les travaux de Vignéras.
Platitude, module universel, représentations modulaires, représentations non ramifiées, immeubles