Quelques aspects arithmétiques de l'hyperbolicité
Some arithmetic aspects of hyperbolicity
Anglais
Nous proposons un survol de l'étude des points entiers et de certains aspects de l'approximation diophantienne sur les variétés algébriques, et nous traitons des analogues arithmétiques de la notion d'hyperbolicité pour celles-ci.
Suivant une conjecture due à Lang et Vojta, les variétés (quasi-projectives) définies sur des corps de nombres dont les points complexes forment une variété hyperbolique (au sens analytique complexe) devraient admettre des ensembles dégénérés de points entiers ou rationnels.
En dimension 1, d'après les travaux de Siegel et Faltings, on sait que les notions analytique et arithmétique d'hyperbolicité sont équivalentes. Nous montrons, en nous concentrant principalement sur le cas de la dimension 2, que beaucoup de problème diophantiens apparemment sans rapport peuvent être ramenés à des questions portant sur la distribution des points entiers sur certaines surfaces algébriques.
Des exemples significatifs sont les suivants. Le théorème de Darmon et Granville sur l'équation de Fermat généralisée $x^p +y^q = z^r$ est démontré ici d'une façon légèrement simplifiée et le lien avec l'hyperbolicité du triplet d'exposants $(p, q, r)$ est développé en détail. Une conjecture sur les dénominateurs des points rationnels sur les courbes elliptiques est relié à la conjecture de Vojta, et une version plus faible est établie inconditionnellement.
Un outil fondamental des preuves de finitude ou de dégénérescence des points entiers sur les variétés est fourni par l'approximation diophantienne. Cette théorie est aussi liée aux questions d'hyperbolicité, et en particulier un nouveau « gap principle » pour les points rationnels sur les courbes elliptiques est démontré et on montre que sa formulation est liée à une condition d'hyperbolicité.