Sur les bases stables K-théoriques de la résolution de Springer
On the K-theory stable bases of the Springer resolution
Anglais
Les bases stables cohomologiques et K-théoriques proviennent de l'étude de la cohomologie quantique et de la K-théorie quantique. La formule de restriction pour les bases stables cohomologiques a joué un rôle important dans le calcul de la connexion quantique du fibré cotangent de variétés de drapeaux partielles. Dans cet article, nous étudions les bases stables K-théoriques de fibré cotangents des variétés de drapeaux. Nous décrivons ces bases en fonction de l'action de l'algèbre de Hecke affine et de l'algèbre de Kostant-Kumar. En utilisant cette description algébrique et la méthode des polynômes de racine, nous donnons une formule de restriction des bases stables. Nous l'appliquons pour obtenir la formule de restriction pour les variétés de drapeaux partielles. Nous construisons également une relation entre la base stable et la base de Casselman dans les représentations de la série principale du groupe dual de Langlands $p$-adique. Comme une application, nous donnons une formule close pour la matrice de transition entre la base de Casselman et les fonctions caractéristiques.