Invariance des solutions globales de l'équation de Hamilton-Jacobi
Invariance of global solutions of the Hamilton-Jacobi equation
Anglais
On prouve que toute solution globale de viscosité de l'équation de Hamilton-Jacobi associée à un hamiltonien convexe et superlinéaire sur le fibré cotangent d'une variété fermée est toujours invariante sous l'action de la composante neutre du groupe de symétries du hamiltonien (on montre que ce groupe est un groupe de Lie compact). En particulier, toute section lagrangienne du fibré cotangent qui est preservée par le flot hamiltonien doit être invariante sous cette action.
Hamilton-Jacobi, lagrangien, symétries