Anglais
Le lemme de Brody est un outil fondamental en hyperbolicité. Il fournit une courbe entière, c’est-à-dire l’image d’une droite complexe par une application holomorphe non constante, en-dehors d’une suite divergente de disques holomorphes. Ainsi le lemme de Brody caractérise l’hyperbolicité en termes d’absence de courbes entières.
Nous présentons des applications directes du lemme de Brody, notamment le théorème de Green (hyperbolicité du complément de 5 droites dans le plan projectif) et un exemple de surface hyperbolique de degré 6 dans l’espace projectif. Nous décrivons aussi une variante du lemme de Brody permettant de mieux localiser la courbe entière produite.
Comme sous-produit de cette variante, l’hyperbolicité est caractérisée en termes d’inégalité isopérimétrique linéaire pour les disques holomorphes.