Anglais
Nous étudions des propriétés de nature algébrique qu'on présume en rapport avec l'hyperbolicité. Un résultat classique de Demailly fournit des minorations pour le genre des courbes dans les variétés hyperboliques. Les inégalités de Demailly sont étroitement liées aux conjectures géométriques de Lang-Vojta affirmant que les courbes pour les paires logarithmiques de type général devraient satisfaire des inégalités similaires.
Partant du résultat classique de Bogomolov, qui démontre de telles inégalités pour des surfaces de type général à deuxième nombre de Segre positif, nous nous concentrons sur une preuve alternative de Miyaoka, qui rend l'inégalité effective (puisque les constantes peuvent être choisies comme fonctions des nombres de Chern de la surface).
La preuve est présentée comme une illustration de la théorie des orbifolds de Campana : les minorations du genre des courbes sont obtenues comme conséquences d'inégalités orbifold générales de type Bogomolov-Miyaoka-Yau.