SMF

Derived functors of the destabilisation and the Adams spectral sequence

Derived functors of the destabilisation and the Adams spectral sequence

Saïd ZARATI
  • Année : 1990
  • Tome : 191
  • Format : Papier, Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 55S10, 55T15
  • Pages : 285-298
  • DOI : 10.24033/ast.59

In this note we prove the following Theorem – Let $X$ and $Y$ be two pointed CW complexes such that (i) $\overline {H}^*(X;\mathbb {F}_2)\simeq \Sigma ^2I$, where $I$ is an injective unstable module (ii)$\overline {H}^*(Y;\mathbb {F}_2)$ is gradually finite and nil-closed. Then the Adams spectral sequence for the group $[S^\infty X,S^\infty Y]$ degenerates at the $E_2$ term. This theorem is deduced by Lannes and the author, and from the relationship between the Ext groups and the derived functors of the destabilization.

Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...