Français
Ce volume est consacré aux difféomorphismes $C^1$-structurellement stables (appelés ici difféomorphismes de Smale) des surfaces compactes. Le résultat principal montre que leur dynamique topologique globale (c'est à dire leur e de conjugaison topologique) admet une présentation combinatoire finie. Pour cela nous considérons les ensembles hyperboliques saturés (c'est à dire égaux à l'intersection de leurs variétés invariantes) et nous construisons un voisinage invariant canonique (à conjugaison près) de ces ensembles (leur domaine). Nous montrons alors que la dynamique en restriction à un domaine est caractérisée par le type géométrique d'une partition de Markov de l'ensemble hyperbolique saturé : il s'agit d'une combinatoire décrivant comment (ordre, position et sens) l'image d'un rectangle de la partition coupe les rectangles de cette partition. La dynamique globale est alors obtenue en recollant les domaines le long de leur bord. L'une des clefs de la longue démonstration du résultat principal est une analyse détaillée du dessin des courbes invariantes des difféomorphismes de Smale des surfaces (c'est à dire de leur position topologique dans la surface). En corollaire du résultat principal, nous montrons que le dessin des courbes invariantes caractérise en grande partie la dynamique topologique. Certains types géométriques abstraits ne correspondent pas à des difféomorphismes de Smale de surfaces compactes. Nous définissons le genre d'un type géométrique abstrait, qui est un minorant du genre de toute surface compacte sur laquelle on peut réaliser le type géométrique comme partition de Markov d'un ensemble hyperbolique saturé ; nous caractérisons alors les types géométriques de genre fini.