La dynamique des flots de Kuperberg génériques
The dynamics of generic Kuperberg flows
Anglais
Dans ce travail, nous étudions les propriétés dynamiques des flots sans orbites périodiques construits par Krystyna Kuperberg sur les variétés de dimension 3. Nous introduisons la notion de « lamination à fermeture éclair » et, sous des hypothèses de généricité, nous montrons que l'unique ensemble minimal de ces flots est une lamination à fermeture éclair invariante. Nous donnons une description précise de la topologie et des propriétés dynamiques de l'ensemble minimal, parmi lesquelles la présence de phénomènes d'entropie nulle ainsi que du comportement chaotique. Finalement, nous prouvons que l'ensemble minimal a une forme instable au sens de la théorie de la forme, et satisfait la condition de Mittag-Leffler pour les groupes d'homologie d'une suite de voisinages.