Théorie de Hodge p-adique et fonctions zeta de formes modulaires
p-adic Hodge theory and values of zeta functions of modular forms
Astérisque | 2004
- Consulter un extrait
- Année : 2004
- Tome : 295
- Format : Électronique
- Langue de l'ouvrage :
Anglais - Class. Math. : 11F11, 11F67, 11F80, 11F85, 11G05, 11G16, 11G40, 11R33, 11R39, 11R56, 11S80, 11S99, 14F30, 14F42, 14G10, 14G35, 14G40
- Pages : 117-290
- DOI : 10.24033/ast.639
Si f est une forme modulaire, nous construisons un système d'Euler attaché à f, ce qui nous permet d'obtenir des bornes pour les groupes de Selmer de f. Une loi de réciprocité explicite permet de relier ce système d'Euler à la fonction zêta p-adique de f, ce qui nous permet d'obtenir un résultat de divisibilité en direction de la conjecture principale pour f ainsi que des minorations pour l'ordre d'annulation de cette fonction zêta p-adique. Dans le cas particulier où f est attachée à une courbe elliptique E définie sur Q, nous prouvons que la fonction zêta p-adique de E a un zéro en s=1 d'ordre supérieur ou égal au rang du groupe des points rationnels de E.
Forme modulaire, système d'Euler, groupe de Selmer, loi de réciprocité, fonction zêta p-adique, courbe elliptique