Un théorème de Liouville pour les algèbres de Jordan
![Un théorème de Liouville pour les algèbres de Jordan](https://smf.emath.fr/sites/default/files/styles/image_165x234/public/2017-08/smf_bull_124_299-327.jpg?itok=FTt006eX)
Français
Un théorème ique de Liouville décrit les transformations conformes d'un espace vectoriel euclidien. Nous généralisons ce théorème aux algèbres de Jordan simples (et non isomorphes à $\mathbb R$ ou $\mathbb C$). La première partie de la preuve est purement algébrique. Nous y montrons que l'algèbre de Lie du groupe de structure d'une algèbre de Jordan simple est de type fini et d'ordre 2. Dans la deuxième partie de la preuve nous en déduisons la description des transformations d'une algèbre de Jordan simple qui sont conformes par rapport au groupe de structure de l'algèbre de Jordan. Elles forment une groupe de Lie de transformations birationnelles qui est connu comme groupe de Kantor-Koecher-Tits, et nous pouvons caractériser ce groupe comme le groupe des transformations conformes de la complétion conforme de l'algèbre de Jordan.