Métriques d'Einstein asymptotiquement symétriques
Asymptotically symmetric Einstein metrics
Français
Cet article étudie les métriques d'Einstein asymptotiquement symétriques, ce qui signifie que leur courbure à l'infini est asymptotique à la courbure d'un espace symétrique de rang 1 de type non compact (c'est-à-dire d'un espace hyperbolique). Deux constructions de telles métriques d'Einstein sont réalisées. La première passe par l'analyse et met en correspondance les déformations d'Einstein des espaces hyperboliques complexe, quaternionien et octonionien, avec certaines métriques de Carnot-Carathéodory sur le bord à l'infini. Dans les cas quaternionien et octonionien, on obtient à l'infini des objets que j'appelle des structures de contact quaternioniennes (ou octonioniennes). La seconde construction est au contraire twistorielle : partant d'une structure de contact quaternionienne, analytique réelle, on montre qu'elle est le bord à l'infini d'une unique métrique quaternion-kählérienne (qui est en particulier d'Einstein), définie dans un voisinage de l'infini. La géométrie des structures de contact quaternioniennes est ainsi assez bien comprise, alors que les structures de contact octonioniennes restent un objet très mystérieux.