Colloque d'Analyse Complexe et Géométrie

- Consulter un extrait
- Année : 1993
- Tome : 217
- Format : Électronique, Papier
- Langue de l'ouvrage :
Français - Class. Math. : 32-06, 32A27, 32C10, 32E30, 32F10, 32F15, 32F20,32H
- Nb. de pages : 304
- ISSN : 0303-1179
- DOI : 10.24033/ast.219
Ce volume rassemble des contributions au Colloque d'Analyse Complexe et Géométrie organisé au CIRM en janvier 1992. Le Colloque a mis en évidence les liens indissociables entre aspects analytiques et géométriques. Le problème de prolongement d'objets holomorphes a été un des thèmes principaux abordés. Des conférences plénières ont fait une présentation synthétique de certains thèmes : résidus, problème du $\overline {\partial }$-Neumann, prblèmes de prolongement et analycité séparée, prolongement des fonctions de Cauchy-Riemann. Les autres conférences ont porté sur des sujets variés et ont aussi manifesté l'interaction de l'analyse complexe avec les autres domaines des mathématiques : topologie, équations aux dérivées partielles, géométrie différentielle...